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Figure 1. Scanalog integrates reconfigurable analog hardware, programmable data capture and replay, and a high-level software interface to support
the design and debugging phases of analog circuit work. Here, raw signals from an IR photoelectric sensor are conditioned using gain and comparator
modules to produce a clean digital output, enabling proximity sensing in interactive devices.

ABSTRACT
Analog circuit design is a complex, error-prone task in which
the processes of gathering observations, formulating reason-
able hypotheses, and manually adjusting the circuit raise sig-
nificant barriers to an iterative workflow. We present Scanalog,
a tool built on programmable analog hardware that enables
users to rapidly explore different circuit designs using direct
manipulation, and receive immediate feedback on the resulting
behaviors without manual assembly, calculation, or probing.
Users can interactively tune modular signal transformations on
hardware with real inputs, while observing real-time changes
at all points in the circuit. They can create custom unit tests
and assertions to detect potential issues. We describe three
interactive applications demonstrating the expressive potential
of Scanalog. In an informal evaluation, users successfully
conditioned analog sensors and described Scanalog as both
enjoyable and easy to use.
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INTRODUCTION
Analog electronics are widely used to sense and act on signals
from the real world. For example, a light-seeking robot might
employ analog circuits to condition signals from an photocell
to sense brightness, interface those signals with digital logic
using an analog-to-digital converter, and then drive outputs
such as motors. Analog and mixed-signal stages occur in
most end-user devices, and are particularly advantageous in
interactive devices to process continuous signals with speed,
precision, and low power.

However, designing analog circuits is difficult for a number of
reasons. Among these are:

1. Physical construction of circuits is slow and error-prone.
Wiring mistakes and poor connections introduce hard-to-
detect bugs even in correct designs. [7].

2. Real circuits often do not match simulations, e.g. due to
noise, faulty hardware, and limitations of real components.

3. Changes to an analog system often propagate to affect
other components, making it difficult to isolate bugs or
detect the failures of previously functional subunits. With-
out the ability to automatically monitor parts of the circuit
with assertions or unit tests, the user must take backtrack
repeatedly to find sources of error.
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4. The inability to readily observe the internal state of the
circuit results in a slow, complex, and error-prone debug-
ging process in which the designer manually probes with
an oscilloscope to gather observations.

These issues hinder the ability of designers to iteratively design
and debug circuits, as each step in the iterative cycle (observ-
ing the behavior, diagnosing bugs, redesigning the circuit, and
implementing the new design) is slow and laborious [19].

One technology that can address some of these difficulties is
the Field-Programmable Analog Array (FPAA). The FPAA
is a programmable analog hardware platform. Much like an
FPGA (Field Programmable Gate Array) enables the program-
ming of digital logic, FPAAs utilize programmable resources
to connect discrete analog components into a variety of cir-
cuits. An FPAA is typically accompanied by a software de-
sign tool, which lets users specify a circuit design, flash the
design onto the board, then test the board in their physical
application, iterating as necessary. FPAAs address two of the
aforementioned difficulties of analog circuit design: (1) Users
can rapidly make modifications to a circuit without the need to
mechanically assembly components, accelerating the iterative
process and reducing mis-wiring errors. (2) Users can design
the circuit in tandem with real inputs, eliminating errors in
moving from simulation to application.

Despite these advantages, FPAAs remain unhelpful in assist-
ing the user to better observe and debug the behavior of their
circuit. To support an iterative workflow, we desire not only
that the user can readily make changes using direct manip-
ulation, but also that they can readily observe the effects of
those changes with immediate feedback. We present Scanalog
(“Scan” + “Analogue”, Figure 1), an interactive, high-level
design tool which interfaces with an FPAA to support the
processes of designing, building with, and understanding ana-
log electronics. Scanalog combines rapidly programmable
hardware, integrated sensing of internal signals, and arbitrary
waveform generation to address the difficulties of analog de-
sign in the following ways:

• Provides the user with direct manipulation of the hardware
in real-time while observing its response to real input. This
tightened feedback loop allows for rapid iteration and en-
ables the user to "think by doing."

• Facilitates understanding of internal state by displaying
signals from all points in the working circuit in real-time.
These visualizations provide immediate feedback of the
behavior of the entire circuit as the user makes changes.

• Enables the use of built-in and user-defined assertions to
automatically detect issues during design. This eliminates
the need to manually search for the source of an error when
new modifications to the circuit impact previously func-
tional elements.

• Enables the user to record real inputs and subsequently re-
play them through the hardware to perform unit testing. This
aids the user in verifying the correctness of their hardware
without simulation or the need to repeatedly and manually
provide inputs.

RELATED WORK

Circuit Design Tools
Scanalog draws from a number of tools used by experts in the
design and prototyping of circuits. Graphical circuit design
tools such as EAGLE [5], Altium Designer [2], or Fritzing [17]
assist the user in adding components to and wiring a circuit
schematic. Users can then lay out designs for fabrication
to create functional hardware. Circuit design tools typically
also include simulators, such as SPICE [20], which help the
user to predict the response of their system to a variety of
conditions. Like Scanalog, many of these simulators and
graphical circuit design tools enable interactive adjustment
of circuit parameters. However, they do not operate on live
signals, and do not configure hardware that can be tested in
the context of the application.

An interface designed by Victor [23] also visualizes simulated
signals in real time throughout an interactive virtual circuit,
inspiring the design of our system. Scanalog implements these
interactions on real hardware and signals.

LabVIEW [16] is a data acquisition tool that can automate
the processes of observing input signals and processing them
using a dataflow programming interface. In addition, it can
be used to program the behavior of Digital Signal Processors
(DSPs). Like FPAAs, DSPs can be programmed to inter-
face with and manipulate continuous signals in various ways.
However, DSPs rely on quantizing an analog signal and ma-
nipulating it using digital logic, yielding limitations in terms
of resolution, frequency range, power, etc. as compared to ana-
log components. While LabVIEW and other data acquisition
tools can display real-time signals from the circuit similarly to
Scanalog, they must be manually configured with a specific
probe for each site.

Finally, design tools for FPAAs such as AnadigmDesigner [4]
and Cypress PSoC Creator [10] interface directly with pro-
grammable analog hardware. Their graphical user interfaces
enable the user to lay out a design consisting of high-level mod-
ules, connect them together, and set their parameters. When
finished with the design, the user can then flash the circuit onto
the FPAA. These circuits are typically static once flashed, with
the exception of a small set of exposed parameters (e.g. gain)
which the user can control by developing a custom application
alongside their circuit. For example, using AnadigmDesigner,
a user can design a circuit topology, set values for each con-
figurable parameter, flash the FPAA, and probe the output to
verify their design. Then, when the circuit requires an adjust-
ment, the user must return to the software design, set new
values, reprogram, and probe once more. Scanalog instead
provides direct manipulation of the FPAA by immediately
reflecting changes within the interface onto the hardware, and
visualizes within the interface the real-time signals passing
through the hardware.

Debugging and Prototyping in Physical Computing Tasks
Prior work has explored a number of techniques for more
interactive development and debugging in electronic device
design. The Toastboard [12] and the Visible Breadboard [21]
provide live debugging assistance while prototyping circuits
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Figure 2. Scanalog’s graphical user interface. A: Live visualizations for each module. B: Module instantiated in the workspace. C: Assertion instantiated
in the workspace. D: Tunable parameters of a module. E: Add Circuit Elements palette. F: Assertion/test palette. G: Visualization for manual probe
mode. H: Optional command line. I: Oscilloscope settings.

on a breadboard. However, because these systems do not
leverage programmable hardware, they still require users to
physically construct circuits at a manual pace. Moreoever, as
tools designed to debug digital applications, they are largely
unable to interpret continuous signals, making them unsuitable
for use in analog circuit design.

Researchers have also developed systems that visualize the
internal behavior of a circuit. For example, LightUp, Projec-
tron Mapping, and Flow of Electrons use augmented reality to
display information about a circuit in-situ ([1], [8], [9]). Gam-
ified systems like TagTiles aim to help users gain a familiarity
with electronics and their principles through play [22]. While
pedagogically valuable, these interfaces visualize a limited
set of behaviors and do not serve as general-purpose analog
circuit design tools.

Other tools have focused on helping users to more efficiently
prototype circuits. CircuitStack [25] provides breadboard-like
prototyping on top of software-designed PCB layers, combin-
ing the error-resilience of printed circuits with the flexibility
of a breadboard. Similarly Exemplar [13] and PICL [15]
leverage "Programming by Demonstration" to rapidly config-
ure microprocessors to give desired outputs in response to
sensor data. Finally, toolkits like Phidgets [14], Calder [18],
littleBits [6], and .NET Gadgeteer [24] consist of modular
components intended to jump-start the creation of interactive

devices. These tools can reduce the time needed to design
and prototype functional hardware, but lack customizability
beyond their pre-defined functionality.

WALKTHROUGH OF THE SCANALOG SYSTEM
To illustrate the features of Scanalog, consider the following
example task taken from an introductory lab assignment given
to University students (Figure 3):

A student, Sam, is tasked with building an EKG, a device which
can visualize electrical activity in the heart. He learns that
EKGs work by picking up and amplifying the difference in
electrical potential across the body. Knowing this, he connects
two electrodes to inputs of the FPAA board, attaching the other
ends to his chest (Figure 3.A).

Users begin designing with Scanalog by connecting its hard-
ware to their PC and power source, and opening the interface.
They can then connect to the FPAA board the input and output
connections for their application. All changes to the hard-
ware are thereafter made with Scanalog’s dataflow software
interface (Figure 2) or a built-in command line (Figure 2.H).

Real-Time Visualization of All Circuit Nodes
As Sam connects the electrodes, a visualization of the signal
immediately appears on the screen next to the input modules
(Figure 3.B).



A: Placing electrodes

C: Connecting a subtraction
      module to the signal chain

E: Results from a global debugging test

B: Commencing visualization on the connected electrodes

D: Interactively adding and tuning gain/�ltering stages

F: A completed EKG circuit, with assertions to monitor for issues

Figure 3. An example workflow demonstrating the features of Scanalog in the development of an EKG.

Scanalog’s principal mode of assistance is the real-time vi-
sualization of live signals from all modules in the circuit. In
our example, Scanalog automatically probes signals from the
electrodes from the moment they are connected, rendering
them as waveforms alongside the corresponding input in the
graphical user interface (Figure 2.A). The user can enable or
disable live visualization on the output of each modular stage
within the circuit. Users can also switch from autoscan mode
into manual probe mode, allowing them to capture the output
of any particular module in the circuit with a higher resolution
and refresh rate. As the user advances their design and tunes
parameters, they can watch in real-time how the behavior of
the entire circuit changes.

Immediately Programmed High-Level Modules
Next, Sam knows that the EKG must take the difference be-
tween the two signals, so he selects the Subtraction module
from the Add Circuit Elements palette (Figure 2.E) and adds
it to the circuit. Scanalog immediately reconfigures the FPAA
with resources that subtract the two inputs (Figure 3.C).

Scanalog provides users with high-level modules encapsulat-
ing common subcircuits. Available modules were selected by
observing the components used in analog circuits constructed
in introductory and intermediate engineering classes at Stan-
ford University, and include gain, summation, subtraction,
high-pass filtering, low-pass filtering, and comparator opera-
tions. Changes to the topology or parameters of the working
circuit are immediately reflected in Scanalog’s underlying



hardware, so that users can try various options and observe
their effects on the signal in real time.

Tuning Module/Subcircuit Parameters
Though the electrodes are connected, the result of the subtrac-
tion shows no visible signal. Sam hypothesizes that the ampli-
tude of the signal is too low to see, so he adds a Gain module
to the design. Unsure of the exact amount of amplification, he
scrubs the gain parameter of the module while observing the
output. As the gain increases, he observes a signal. However,
the signal is mostly noise, and so he correspondingly modifies
the design by adding and tuning a low-pass and a high-pass
filter. After filtering, the signal once more appears to require
amplification, so Sam continues adding and tuning gain stages
in an iterative fashion as the EKG signal appears increasingly
well conditioned (Figure 3.D)

For each module, Scanalog provides interactive controls for
their configurable parameters (Figure 2.D). Because changes
are reflected instantly on the hardware and in the live visu-
alizations, users can simply scrub parameters until the ideal
behavior is achieved, rather than repeatedly guessing or cal-
culating values. This direct parameter manipulation helps
the user to build a holistic understanding of the circuit and
facilitates iteration.

Debugging With Customizable Tests
As Sam interactively tunes parameters, he notices that cer-
tain parameter combinations result in the signal appearing
distorted or "clipped." Unsure of the issue, he runs a pass
of built-in global debugging tests over the circuit. Scanalog
reports that the problematic module is exceeding the operating
voltage of the board, and that gain should be reduced at that
stage. (Figure 3.E).

Scanalog stores data captured for visualization to additionally
provide automated debugging features. Scanalog is capable
of scanning the current circuit for likely causes of issues,
as defined by a customizable list of global debugging tests
(Figure 2.F). Users can write their own tests in JavaScript
using a built-in interface within the application.

Signal Assertions
Though he resolves the voltage clipping issue, Sam is worried
that continuing to tune the parameters of the circuit will cause
the same problem elsewhere. To alert himself in this case,
he adds assertions to his workspace, hooking them up to the
output of the later gain stages. When later tuning causes the
output of this module to reach the operating voltage of the
board, the test visually alerts him to the issue.

Scanalog provides the ability to add software-like assertions
that check when the signal violates properties that should re-
main invariant (Figure 4). The checks are performed in real
time, and assertions update visually to indicate a violation.
As changes to an analog component often affect behaviors
in other parts of the circuit, assertions are particularly useful
in detecting and preventing regressions introduced by mod-
ifications to the circuit. Scanalog contains a built-in set of
assertions for basic issues (e.g. no signal on the output), and

Figure 4. Adding in assertions to monitor invariants while designing.
Here, the system detects if the monitored output exceeds the operating
voltage of the hardware, resulting in clipping of the signal.

the user can easily define custom assertions using an editor
within the application.

Recording, Replaying, and Unit Testing Signals
As Sam seeks to finalize the design, he repeatedly compares
several combinations of parameters to determine which allows
him to tune the final filtering stage most effectively. Rather
than repeatedly switching back and forth the settings on the
many modules earlier in the design, Sam records for each
combination of parameters the output of the gain stage just
before the final filter. Then, he uses Scanalog’s playback func-
tionality to generate each signal at the input of the board on
demand. This allows Sam to find the optimal set of parameters
and finish the design.

Scanalog allows users to record signals from the input or any
module within the circuit, and subsequently play them back
into the input of the FPAA on command. This feature serves
two main functions: As a debugging tool, this allows the user
to reliably produce a problematic signal, much like they can
manually simulate a corner case while debugging software.
Moreover, it enables the use of unit tests. For example, a user
designing an interactive system that classifies various gestures
can record an example of each gesture, and quickly verify
that the system recognizes all gestures correctly after each
modification to the design. When run, unit tests iterate through
the collection of recorded signals, verify each assertion for
each signal, and report any test failure.

At the end of this example, the FPAA is configured as a work-
ing EKG, and the student can directly embed it in his appli-
cation. Alternatively, Scanalog can translate the circuit into a
standard representation with discrete components and export
it to a PCB design tool (such as Fritzing) to facilitate fabri-



(A) Designing a circuit using Scanalog

(B) Exporting and editing the circuit in Fritzing (C) Fabricating a PCB

Figure 5. Exporting a circuit from Scanalog (top) into Fritzing (bot-
tom left), and then fabricating the designed circuit with standard com-
ponents on a milled pcb (bottom right).

cation (Figure 5). The output of the EKG from this example
application is visualized in Figure 3.F.

IMPLEMENTATION
In addition to its graphical user interface, Scanalog has three
primary components: an FPAA, a programmable USB oscillo-
scope, and an arbitrary waveform generator (Figure 6). Figure
7 shows the communications between these components in a
functional diagram.

Dynamic Configuration of the FPAA
The FPAA is the core hardware that serves as the user’s analog
circuit. We use the Anadigm AN231E04 [3] due to its abil-
ity to flash new configurations very rapidly. The AN231E04
provides four configurable analog blocks, each containing
eight capacitors, two operational amplifiers, and a compara-
tor. Using switched-capacitor techniques and programmable
interconnects, it can connect these resources to approximate1

a range of common analog subcircuits with variable resis-
tive/capacitive elements. The AN231E04 operates on 3.3V
differential analog signals up to ~1 MHz in frequency.

Scanalog is capable of programming the same high-level mod-
ules as the AnadigmDesigner software, but can continuously
update the circuit topology and parameters of the FPAA in
real time as the user adjusts their design. After the user makes
a modification to the circuit, the hardware reflects the corre-
sponding change within a few milliseconds.

We summarize the continuous programming of the FPAA as
follows: Scanalog internally represents the dataflow model
1We say “approximate” because the switched-capacitor implementa-
tion of the AN231E04 involves a certain frequency-dependent loss of
precision over fixed components.
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Figure 6. Scanalog’s hardware components.

of the GUI using a graph structure. Each module in the GUI
corresponds to a known subcircuit implementing the given
functionality, and for any change in the interface, Scanalog
solves the governing equations of the subcircuit to choose com-
ponent values yielding the desired parameters of the module.
A resource allocation stage then reassigns fixed components
of the FPAA for each subcircuit and stores in a graph the con-
nections which must be made between components. Finally,
bytes are flashed over serial to the appropriate configuration
RAM of the FPAA to reset the board with these connections
(i.e. switch box paths) and components values (i.e. switched
capacitor frequencies). Because Anadigm does not release the
memory map describing which memory locations and byte
values control which aspects of the circuit, implementation
of this final programming stage required reverse engineering
of the mapping through repeated test circuit generation and
comparison.
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Figure 7. Functional diagram of Scanalog and the communications be-
tween its components.



Data Capture and Visualization
Scanalog uses two BitScope Micro BS05 USB Programmable
Oscilloscopes [11] - one to capture and record signals, and
another to generate signals for playback. When sampling
a high-frequency signal, the oscilloscope must capture data
faster than it can stream over USB. Thus, Scanalog captures
"traces" (fixed-duration captures from a given signal) and
updates visualizations within the interface between successive
traces. The BS05 is capable of 20 MS/s analog capture and
can store up to 12288 samples for a given trace. Scanalog
allows the user to adjust the sampling rate and sample size
of the oscilloscope to yield an appropriate window size for
their signal (Figure 2.I). As a generator, the BS05 can output
arbitrary waveforms composed of up to 1024 interpolated
points with voltages ranging from 0 to 3.3 V.

To implement this real-time scanning functionality, the ded-
icated oscilloscope connects to an arbitrary output pin on
the FPAA. Under the hood, while the user designs, Scanalog
rapidly configures connections to this output pin from each
module in the current circuit, triggering a capture for each
module and updating the corresponding visualization before
repeating. This process is invisible to the user, and runs in the
background as they design.

Currently, a single atomic capture (reprogram a new connec-
tion to the oscilloscope, perform capture, read data and update
visualizations) takes roughly 300 ms of overhead plus the
duration of the specified capture. The equates to a ~3 Hz
refresh rate between successive captures on a single module.
Notably, because we choose to use a single oscilloscope and
time-multiplex over all circuit nodes, the refresh rate on each
module decreases linearly with the number of modules enabled
for active visualization.

At any time, however, the user can choose to switch from
autoscanning into a manual probing mode and use the oscil-
loscope as a higher-refresh capture device for any module of
interest (Figure 2.G). Because in this mode the system does
not automatically reconfigure to capture new targets, the cap-
ture overhead takes 150 ms, equating to a refresh rate of ~6 Hz
for most signals. This is useful when fine tuning parameters
where high-fidelity monitoring of the output is important. By
default, the system updates all visualizations as soon as they
are available. However, the user can also pause this view and
manually record a signal from any module output.

Playback
With traces recorded, Scanalog can program the waveform
generator to "replay" the signal back to the FPAA. This re-
quires downsampling the signal to fit within the 1024 point
buffer of the generator, then scaling and offsetting the voltages
values to fit within the generator’s positive output range. A
custom amplification circuit soldered onto the FPAA inverts
the scaling and offsetting on the generated signal to output the
originally captured signal to an customizable input pin.

Tests and Assertions
Scanalog also uses data from captured signals to run its global
debugging tests, assertions, and unit tests. Each capture is
represented as an array of voltage values, and each module

/* Returns true iff the signal has voltages below ground */ 
function hasNegativeVoltages(data, m)

{ 
for (var i = 0; i < data.length; i++) 
{ 

} 

if (data [i] < 0) 

{ 
return true; 

return false; 

Figure 8. A basic user-written test which alerts when a signal has neg-
ative voltages. Test functions are called with a module object (‘m’) con-
taining the module parameters, and an array of voltage values (‘data’)
representing the latest trace for that module.

stores the most recent trace for use with tests. Global debug-
ging tests scan the most recent data for each module, whereas
assertion tests run on every data update for its connected mod-
ule. Finally, Scanalog implements unit tests by replaying
recorded signals through a circuit configured with assertions
and reporting the results of those tests.

To enable user-defined tests, Scanalog stores all tests as string-
represented function objects which can be edited in text within
the application. To add a new test, the user provides a name
for the test, adds an explanation to report on test failure, and
then edits an skeleton code of an example test to implemented
out the desired check. Tests can access the array of voltages
captured in the most recent trace, as well as parameters of the
module on which it runs. A basic example of a user-defined
test is shown in Figure 8.

EXAMPLE RESULTS
We created three interactive systems to demonstrate Scanalog’s
potential to assist with a range of analog design tasks. The first,
described in the Walkthrough section (Figure 3), is a 2-lead
EKG monitor capable of visualizing the electrical activity in
an individual’s heart.

The second application (Figure 9) is an interactive audio mixer
capable of filtering, crossfading, and volume-adjusting tracks
in real-time. The user first connects the signal lines from an
audio source (e.g. the 3.5 mm headphone jack of an MP3
player) to the input of the FPAA, and then connects a speaker
to the output. Because the audio signal is an analog wave-
form, Scanalog can manipulate the sound directly without
sampling. We implement crossfading by connecting multiple
sound sources to a summing stage, which can add their signals
together with adjustable coefficients. The combined output of
the summing stage passes first through a low-pass and then
a high-pass filter. At each stage, the user can adjust the gain
(volume) of the signal and the frequency ranges which pass
through.

The third application (Figure 1) shows the conditioning of an
analog sensor to output a digital signal. We use a QRB1134 IR
photoelectric sensor, which detects proximity and reflectance
of objects. The sensor has an LED which emits infrared light,
coupled with a photoresistive element tuned to the same wave-
length. As objects come into proximity and reflect light back
into the receiver, the resistance of the sensor changes. Our
application configures the sensor for proximity sensing (to
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Figure 9. Real-time audio crossfading by summing analog signals. Top:
The setup used, including a speaker (A), two audio sources (C and D),
and the Scanalog hardware (B) and software (E). Bottom: The audio
circuit, consisting of summing and filtering stages.

detect user input), as well as to sense changes in material with
differing reflectances (as a sensing device for robots). The
circuit consists of a preliminary gain stage (to increase the
depolarization of the signal in response to an object), followed
by a variable reference comparator to output a digital high or
low based on a tunable threshold. As the sensor requires more
current than the FPAA can source, we also utilize a separate
power circuit constructed on a breadboard.

INFORMAL EVALUATION
To solicit feedback and further understand how users are able
to make use of Scanalog, we invited eight university students to
explore its features and to complete a circuit design task in an
informal evaluation. All students had some previous exposure
to prototyping circuits on a breadboard, but none were experts
in analog circuit design. We walked each user through Scana-
log’s features and the basic workflow, then handed off control
for the design task. The task involved creating a proximity-
sensing switch using the IR photoelectric sensor described in
the previous section. Specifically, the user’s circuit needed to
output a digital high value when the user covered the sensor
with their finger and a digital low otherwise. The instructions
consisted solely of this specification, and the user had access
only to the Scanalog interface to complete the task.

All participants were able to complete the task successfully,
and no participant took longer than seven minutes to reach a
working solution. While some students deduced the necessary
modules right away, others took an exploratory route through
several incorrect or near-correct approaches. Likert responses
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Figure 10. Likert responses to the questions, “Did you like the system?”
(top), and “How hard was it to complete the task?” (bottom).

to a post-task survey revealed that all users enjoyed using
Scanalog, while most (but not all) users reported completing
the task without much difficulty (Figure 10).

When asked about the aspects of Scanalog that they found
most useful, all participants mentioned the real-time visualiza-
tion of internal signals, and six of eight mentioned the ability
to iterate quickly with real-time circuit modifications. Partic-
ipants also spoke to how these features might assist them in
their own projects and work habits. For example, one user
described how Scanalog’s ability to quickly tune each compo-
nent while actively visualizing the others would have helped
her to combine filtering with gain stages in conditioning an
accelerometer for a design project: "Filtering is very hard,
because all you see is a noisy signal, and it’s a pain to try out
a bunch of different filters and try to judge if it’s getting better
or worse. Being able to just see the signal and very quickly
mess with the parameters would be so helpful."

In follow-up interviews, users compared Scanalog to the tools
that they typically used, reporting a greater degree of immedi-
acy: "It’s great that circuits are physical, but there’s nothing
that you can detect with your own senses without having to
probe or use these other instruments. The closer I can get to
what’s happening in the circuit, the easier it is for me to un-
derstand what’s going on." As compared to their conventional
tools (hand drawn schematics, graphical circuit design tools,
physical breadboarding, oscilloscopes, and multimeters), users
unanimously felt that Scanalog made the completion of the
task faster and simpler.

Users also suggested a number of improvements to Scana-
log, primarily in the form of feature requests. Among these
requests were: higher level interface tools like an "undo but-



ton," saving and loading of custom circuits, and the ability to
edit the underlying code of assertions in the workspace. Two
participants remarked that the ability to directly overlay live
visualizations from multiple modules would enable them to
more easily compare the differences between signals.

LIMITATIONS
Despite its utility, the current version of Scanalog still has
limitations which pose opportunities for future work.

Many such limitations are inherent to the underlying hardware
chosen for our implementation. The AN231E04 FPAA has a
finite set of resources for configuring modules limited in both
type and quantity, and it cannot operate on high frequency
signals above ~1 MHz. For applications requiring great pre-
cision, idiosyncrasies resulting from its switched-capacitor
behavior can cause noticeable deviations from a version of
the same circuit using true resistive elements. Similarly, the
oscilloscope and generator both have limits in the frequencies,
durations, and precisions of signals with which they can work.
However, Scanalog can easily be implemented on different
platforms with different performance characteristics.

The refresh rate of Scanalog’s visualizations is limited due
to the time-multiplexing of a single oscilloscope over multi-
ple modules in a circuit, as described in the Implementation
section. As a result, capturing long signals on the order of
seconds can noticeably delay updates for the rest of the cir-
cuit. While the current refresh rate can be improved with
software optimization, applications requiring high refresh rate
would benefit from the use of multiple oscilloscopes working
in parallel to provide continuous capture at high bandwidth.

Finally, while the high-level modules currently implemented
on Scanalog allow for the manipulation of signals in a number
of flexible ways, they do not cover all possible analog circuits,
and more expert users may desire to work in a lower-level fash-
ion with raw analog components. Future versions of Scanalog
can not only offer more modules, but can expose the raw re-
sources of the board, affording expert users the flexibility to
combine op-amps, comparators, and switched capacitors into
arbitrary configurations.

FUTURE DIRECTIONS AND CONCLUSION
Scanalog addresses the difficulties of analog circuit design by
offering users direct manipulation of circuit parameters, imme-
diate feedback of circuit behaviors, and automated debugging
features. Early feedback is encouraging to show that these
techniques enable users to more rapidly and iteratively solve
analog design tasks.

Currently, FPAAs and related devices are marketed towards
professional hardware designers, allowing them to more
quickly test designs without manual fabrication. However,
with an accessible tool that facilitates rapid prototyping and
debugging, we hope to widen the application space of FPAAs
to students, makers, and even users from non-engineering
domains. For example, direct manipulation of analog stages
can aid artists or designers of musical interfaces in rapidly
exploring a design space, while assertions and unit tests can
be useful in robotics when tuning sensors and actuators in a

control flow system. We intend to deploy Scanalog in the wild
with users of varied skills levels and to study in detail how
their workflows change using its various supportive features.

Further, research can apply the core principles of Scanalog —
instrumentation to enable direct manipulation and immediate
feedback — more generally across other domains, such as
medicine or product design. Our work will continue to explore
such opportunities moving forward, as we believe that these
techniques can be invaluable in designing and understanding
the behaviors of complex systems.
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